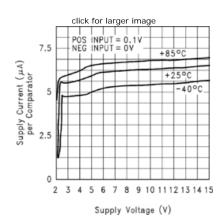
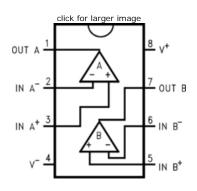

LMC6772 - Dual MicroPower Rail-to-Rail Input CMOS Comparator with Open Drain Output

Features

Typical Application


- (Typical unless otherwise noted)
- Low power consumption (max): $I_s = 10 \ \mu A/comp$
- Wide range of supply voltages: 2.7V to 15V
- Rail-to-Rail input common mode voltage range
- Open drain output
- Short circuit protection: 40 mA
- Propagation delay (@V $_{\rm s}$ = 5V, 100 mV overdrive): 5 μs
- LMC6772Q is AEC-Q qualified
- LMC6772Q has -40°C to 125°C temperature range


Parametric Table

Response Time	4 us
Output Bus	Open Drain
Supply Min	2.7 Volt
Supply Max	15 Volt
Channels	2 Channels
Offset Voltage max, 25C	15, 5 mV
Output Current	45 mA
Input Range	R-R Input
Supply Current Per Channel	0.006 mA
PowerWise Rating 3	24 uA x us
Max Input Bias Current	0.001 nA
Special Features	Undefined
Temperature Min	-40 deg C
Temperature Max	85 deg C
Function	Comparator
Automotive Selection Guide	Yes

Typical Performance

Connection Diagram

Applications

- Laptop computers
- Mobile phones
- Metering systems
- Hand-held electronics
- RC timers
- Alarm and monitoring circuits
- Window comparators, multivibrators

LMC6772/LMC6772Q Dual Micropower Rail-To-Rail Input CMOS Comparator with Open Drain Output (Japanese)

Package Availability, Models

			P	ackage			Factory Lea	ad Time			Std	Package		
Part Number	Туре	Pins	Spec.	MSL Rating	Peak Reflow	RoHS Report	Weeks	Qty	Models		Pack Size	Marking Format		
LMC6772AIM	SOIC NARROW	8	STD	1	235	RoHS	Full produ	uction	LMC6772A.MOD		rail of	NSZXTT LMC67		
	SOIC NARROW	0	NOPB	1	260	RUHS	6 weeks	1000	LINC6772A.MOD		95	72AIM		
LMC6772BIM	SOIC NARROW	8	STD	1	235	RoHS	Full produ	uction	LMC6772B.MOD		rail of	NSZXTT LMC67		
	SOIC NARROW	0	NOPB	1	260	КОПЗ	6 weeks	2000	LWC0772B.WOD		95	72BIM		
LMC6772AIMX	SOIC NARROW	8	STD	1	235	RoHS	Full produ	uction	LMC6772A.MOD		reel	NSZXTT LMC67		
	SOIC NARROW	0	NOPB	1	260	КОПЗ	6 weeks	3000	LINCOTTZA.MOD		2500			
LMC6772BIMX	SOIC NARROW	8	STD	1	235	RoHS	Full produ	uction	LMC6772B.MOD		reel of	NSZXTT LMC67		
LINGOTTZBIINA	SOIC NARROW	0	NOPB	1	260	KUHS	6 weeks	7500	LINCOTT2B.INOD		2500	72BIM		
LMC6772QMM	MINI SOIC	8	NOPB	1	260	RoHS	Full produ	Full production	N/A		reel	ZXTT		
LINGOTTZQININ		Ŭ		'	200	Nono	6 weeks	2000	10/7 (N/A	AX5A		
LMC6772QMMX	MINI SOIC	8	NOPB	1	260	RoHS	Full produ 8 weeks	uction 5000	N/A		reel of N/A	ZXTT AX5A		
			STD	1	260		Full produ				reel			
LMC6772AIMM	MINI SOIC	8	NOPB	1	260	RoHS	6 weeks	5000	LMC6772A.MOD		of 1000	ZXTT C21		
			STD	1	260		Full produ	uction			reel	ZXTT		
LMC6772AIMMX	MINI SOIC	8	NOPB	1	260	RoHS	6 weeks	25000	LMC6772A.MOD		of 3500	C21		
			STD	1	NA		Full produ	uction			rail	NSUZXYTT		
MC6772BIN	MDIP	MDIP	MDIP	8	NOPB	1	NA	RoHS	6 weeks	500	LMC6772B.MOD		of 40	LMC6772 BIN
Obsolete Vers	sions	I		· ·					II		 I	<u> </u>		
Obsolete Par	t Alteri	nate F	Part or	Supplie	•		Source		Last Time Buy Date					
LMC6772AIN	TLC3702					TEXAS I	STRUMENTS	06/	07/2005					

General Description

The LMC6772 is an ultra low power dual comparator with a maximum 10 µA/comparator power supply current. It is designed to operate over a wide range of supply voltages, with a minimum supply voltage of 2.7V.

The common mode voltage range of the LMC6772 exceeds both the positive and negative supply rails, a significant advantage in single supply applications. The open drain output of the LMC6772 allows for wired-OR configurations. The open drain output also offers the advantage of allowing the output to be pulled to any voltage rail up to 15V, regardless of the supply voltage of the LMC6772.

The LMC6772 is targeted for systems where low power consumption is the critical parameter. Guaranteed operation at supply voltages of 2.7V and rail-to-rail performance makes this comparator ideal for battery-powered applications.

Refer to the LMC6762 datasheet for a push-pull output stage version of this device.

Reliability Metrics

Part Number	Process	EFR Reject	EFR Sample Size	PPM *	LTA Rejects	LTA Device Hours	FITS	MTTF (Hours)
LMC6772AIM	P2CMOS	0	48295	0	1	4172500	2	536440139
LMC6772AIMM	P2CMOS	0	48295	0	1	4172500	2	536440139
LMC6772AIMMX	P2CMOS	0	48295	0	1	4172500	2	536440139
LMC6772AIMX	P2CMOS	0	48295	0	1	4172500	2	536440139
LMC6772BIM	P2CMOS	0	48295	0	1	4172500	2	536440139
LMC6772BIMX	P2CMOS	0	48295	0	1	4172500	2	536440139
LMC6772BIN	P2CMOS	0	48295	0	1	4172500	2	536440139
LMC6772QMM	P2CMOS	0	48295	0	1	4172500	2	536440139

LMC6772/LMC6772Q Dual Micropower Rail-To-Rail Input CMOS Comparator with Open Drain Output

General Description

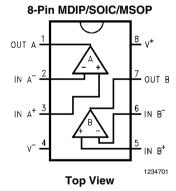
The LMC6772 is an ultra low power dual comparator with a maximum 10 μ A/comparator power supply current. It is designed to operate over a wide range of supply voltages, with a minimum supply voltage of 2.7V.

The common mode voltage range of the LMC6772 exceeds both the positive and negative supply rails, a significant advantage in single supply applications. The open drain output of the LMC6772 allows for wired-OR configurations. The open drain output also offers the advantage of allowing the output to be pulled to any voltage rail up to 15V, regardless of the supply voltage of the LMC6772.

The LMC6772 is targeted for systems where low power consumption is the critical parameter. Guaranteed operation at supply voltages of 2.7V and rail-to-rail performance makes this comparator ideal for battery-powered applications.

Refer to the LMC6762 datasheet for a push-pull output stage version of this device.

Features


(Typical unless otherwise noted)

- Low power consumption (max): I_S = 10 µA/comp
- Wide range of supply voltages: 2.7V to 15V
- Rail-to-Rail input common mode voltage range
- Open drain output
- Short circuit protection: 40 mA
- Propagation delay (@V_S = 5V, 100 mV overdrive): 5 µs
- LMC6772Q is AEC-Q qualified
- LMC6772Q has –40°C to 125°C temperature range

Applications

- Laptop computers
- Mobile phones
- Metering systems
- Hand-held electronics
- RC timers
- Alarm and monitoring circuits
- Window comparators, multivibrators

Connection Diagram

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	1.5 kV
Differential Input Voltage	(V+)+0.3V to (V-)-0.3V
Voltage at Input/Output Pin	(V+)+0.3V to (V-)-0.3V
Supply Voltage (V+-V-)	16V
Current at Input Pin (Note 8)	±5 mA
Current at Output Pin (Notes 3, 7)	±30 mA
Current at Power Supply Pin, LMC6	772 40 mA
Lead Temperature (Soldering, 10 se	econds) 260°C

2.7V Electrical Characteristics

Storage Temperature Range-65°C to 150°CJunction Temperature (Note 4)150°C

Operating Ratings (Note 1)

Supply Voltage	2.7 ≤ V _S ≤ 15V
Junction Temperature Range LMC6772AI, LMC6772BI	40°C ≤ T _J ≤ 85°C
LMC6772Q	$40^{\circ}C \le T_{J} \le 125^{\circ}C$
Thermal Resistance (θ_{JA})	
N Package, 8-Pin Molded DIP M Package, 8-Pin Surface Mount	100°C/W 172°C/W

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 2.7V$, $V^- = 0V$, $V_{CM} = V^+/2$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6772AI Limit	LMC6772BI Limit	LMC6772Q Limit	Units
			(1000 0)	(Note 6)	(Note 6)	(Note 6)	
V _{OS}	Input Offset Voltage		3	5	15	10	mV
				8	18	13	max
TCV _{OS}	Input Offset Voltage Temperature Drift		2.0				µV/°C
	Input Offset Voltage Average Drift	(Note 10)	3.3				μV/ Month
I _B	Input Current		0.02				pА
I _{os}	Input Offset Current		0.01				pА
CMRR	Common Mode Rejection Ratio		75				dB
PSRR	Power Supply Rejection Ratio	±1.35V < V _S < ±7.5V	80				dB
A _V	Voltage Gain	(By Design)	100				dB
V _{CM}	Input Common-Mode Voltage	CMRR > 55 dB	3.0	2.9	2.9	2.9	V
	Range			2.7	2.7	2.7	min
			-0.3	-0.2	-0.2	-0.2	V
				0.0	0.0	0.2	max
V _{OL}	Output Voltage Low	$I_{LOAD} = 2.5 \text{ mA}$	0.2	0.3	0.3	0.3	V
				0.4	0.4	0.45	max
I _S	Supply Current	For Both Comparators	12	20	20	20	μA
		(Output Low)		25	25	25	max
I _{Leakage}	Output Leakage Current	$V_{IN}(+) = 0.5V,$ $V_{IN}(-) = 0V, V_{O} = 15V$	0.1	500	500	500 1000	nA

5.0V and 15.0V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5.0V$ and 15.0V, $V^- = 0V$, $V_{CM} = V^+/2$. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMC6772AI Limit	LMC6772BI Limit	Limit	Units	
				(Note 6)	(Note 6)	(Note 6)		
V _{OS}	Input Offset Voltage		3	5 8	15 18	10 13	mV	
TO1/		N/- 5V/	0.0	ö	18	13	max	
TCV _{OS}	Input Offset Voltage Temperature Drift	V+ = 5V	2.0				µV/°C	
		V+ = 15V	4.0					
	Input Offset Voltage Average Drift	V+ = 5V (Note 10)	3.3				μV/ Month	
		V+ = 15V (Note 10)	4.0					
I _B	Input Current	V = 5V	0.04				pА	
I _{os}	Input Offset Current	V+ = 5V	0.02				pA	
CMRR	Common Mode Rejection Ratio	V+ = 5V	75					
		V+ = 15V	82				dB	
PSRR	Power Supply Rejection Ratio	±2.5V < V _S < ±5V	80				dB	
A _V	Voltage Gain	(By Design)	100				dB	
V _{CM}	Input Common-Mode Voltage	V+ = 5.0V	5.3	5.2	5.2	5.2	V	
	Range	CMRR > 55 dB		5.0	5.0	5.0	min	
			-0.3	-0.2	-0.2	-0.2	Vmax	
				0.0	0.0	0.0	VIIIax	
		V+ = 15.0V	15.3	15.2	15.2	15.2	V	
		CMRR > 55 dB		15.0	15.0	15.0	min	
			-0.3	-0.2	-0.2	-0.2	V	
.,				0.0	0.0	0.0	max	
V _{OL}	Output Voltage Low	$V^+ = 5V$	0.2	0.4 0.55	0.4 0.55	0.4 0.55	V	
		$I_{LOAD} = 5 \text{ mA}$ V ⁺ = 15V	0.0				max	
		-	0.2	0.4 0.55	0.4 0.55	0.4 0.55	V max	
	Supply Current	I _{LOAD} = 5 mA	10					
I _S	Supply Current	For Both Comparators (Output Low)	12	20 25	20 25	20 25	μA	
I _{SC}	Short Circuit Current	$V^+ = 15V$, Sinking, $V_0 = 12V$ (Note 7)	45	23	23	25	max mA	

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$. **Boldface** limits apply at the temperature extreme.

Symbol	Parameter	Conditions	Тур	LMC6772AI	LMC6772BI	Units
			(Note 5)	Limit	Limit	
				(Note 6)	(Note 6)	
t _{RISE}	Rise Time	f = 10 kHz, C _L = 50 pF,	0.3			μs
		Overdrive = 10 mV (Note 9)				
t _{FALL}	Fall Time	f = 10 kHz, C _L = 50 pF,	0.3			μs
		Overdrive = 10 mV (Note 9)				

G
<u> </u>
N
N
S CO
~
0
_
_
~
Ň
12
G
()
$\mathbf{\underline{\vee}}$
-
<u> </u>

Symbol	Parameter	Conditions		Typ (Note 5)	LMC6772AI Limit	LMC6772BI Limit	Units
					(Note 6)	(Note 6)	
t _{PHL}	Propagation Delay	f = 10 kHz,	10 mV	10			μs
	(High to Low)	C _L = 50 pF (Note 9)	100 mV	4			μs
		$V^+ = 2.7V,$ f = 10 kHz,	10 mV	10			μs
		C _L = 50 pF (Note 9)	100 mV	4			μs
t _{PLH}	Propagation Delay (Low to High)	f = 10 kHz,	10 mV	10			μs
		C _L = 50 pF (Note 9)	100 mV	4			μs
		V+ = 2.7V, f = 10 kHz,	10 mV	8			μs
		C _L = 50 pF (Note 9)	100 mV	4			μs

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the electrical characteristics. Note 2: Human body model, 1.5 kΩ in series with 100 pF. The output pins of the two comparators (pin 1 and pin 7) have an ESD tolerance of 1.5 kV. All other pins have an ESD tolerance of 2 kV.

Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of ±30 mA over long term may adversely affect reliability.

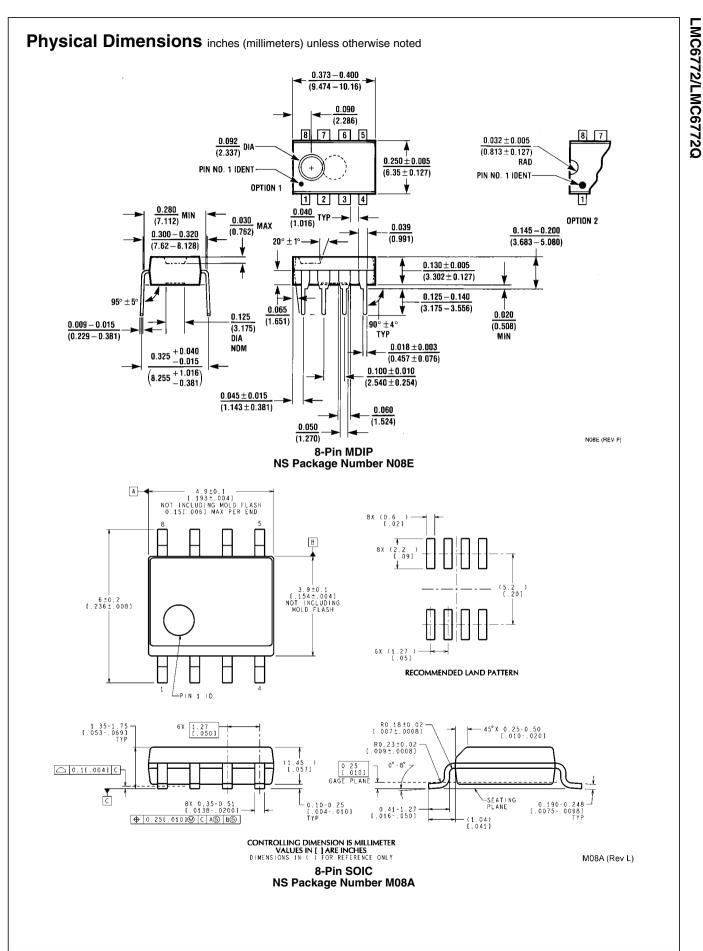
Note 4: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

Note 5: Typical Values represent the most likely parametric norm.

Note 6: All limits are guaranteed by testing or statistical analysis.

Note 7: Do not short circuit output to V⁺, when V+ is > 12V or reliability will be adversely affected.

Note 8: Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.


Note 9: CL inlcudes the probe and jig capacitance. The rise time, fall time and propagation delays are measured with a 2V input step.

Note 10: Input offset voltage Average Drift is calculated by dividing the accelerated operating life drift average by the equivalent operational time. The input offset voltage average drift represents the input offset voltage change at worst-case input conditions.

Ordering Information

Package	Temperature Range -40°C to 85°C	Package Marking	Transport Media	NSC Drawing	Features	
8-Pin MDIP	LMC6772BIN	LMC6772BIN	40 Units/Rail	N08E		
	LMC6772AIM	LMC6772AIM	95 Units/Rail			
8-Pin SOIC	LMC6772AIMX		2.5k Units Tape and Reel	M08A		
0-PIII SOIC	LMC6772BIM	LMC6772BIM	95 Units/Rail			
	LMC6772BIMX		2.5k Units Tape and Reel			
	LMC6772AIMM	C21	1k Units Tape and Reel			
8-Pin MSOP	LMC6772AIMMX	621	3.5k Units Tape and Reel	MUA08A	AEC-Q100 Grade 1	
0-FIII MISOP	LMC6772QMM		1k Units Tape and Reel	IVIUAU8A	qualified. Automotive Grade Production Flow*	
	LMC6772QMMX	LMC6772QMMX AX5A				

*Automotive Grade (Q) product incorporates enhanced manufacturing and support processes for the automotive market, including defect detection methodologies. Reliability qualification is compliant with the requirements and temperature grades defined in the AEC-Q100 standard. Automotive grade products are identified with the letter Q.

